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Algorithms in Combinatorial Geometry

This book offers a modern approach to computational ge-
ometry, an area that studies the computational complexity
of geometric problems. Computational geometry is strongly
connected to the considerably older field of combinatorial
geometry. For example, the combinatorial structure of a
geometric problem usually decides which algorithmic
method solves the problem most efficiently. Furthermore,
the analysis of an algorithm often requires a great deal of
combinatorial knowledge.

The book consists of three parts: a combinatorial part, a
computational pari, and one that presents applications of
the results of the first two parts. The choice of the topics
covered in this book was guided by the attempt to describe
the most fundamental algorithms in computational geom-
etry that have an interesting combinatorial structure. The
book is also a collection of a large number of results giving
the book an encyclopedic character. Each chapter includes
a set of exercises of various degrees of difficulty. One of the
purposes of these collections of exercises and open prob-
lems is to give results that extend the material presented in
the corresponding chapters; another purpose is io point
out related open problems. Each chapter also contains a
collection of bibliographic notes.
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PREFACE

Computational geometry as an area of research in its own right emerged in the
early seventies of this century. Right from the beginning, it was obvious that
strong connections of various kinds exist to questions studied in the considerably
older field of combinatorial geometry. For example, the combinatorial structure
of a geometric problem usually decides which algorithmic method solves the
problem most efficiently. Furthermore, the analysis of an algorithm often
requires a great deal of combinatorial knowledge. As it turns out, however, the
connection between the two research areas commonly referred to as computa-
tional geometry and combinatorial geometry is not as lop-sided as it appears.
Indeed, the interest in computational issues in geometry gives a new and con-
structive direction to the combinatorial study of geometry.

It is the intention of this book to demonstrate that computational and com-
binatorial investigations in geometry are doomed to profit from each other. To
reach this goal, I designed this book to consist of three parts, a combinatorial
part, a computational part, and one that presents applications of the results of
the first two parts. The choice of the topics covered in this book was guided by
my attempt to describe the most fundamental algorithms in computational
geometry that have an interesting combinatorial structure. In this early stage
geometric transforms played an important role as they reveal connections
between seemingly unrelated problems and thus help to structure the field.
These transforms led me to believe that arrangements of hyperplanes are at the
very heart of computational geometry — and this is my belief now more than
ever.

As mentioned above, this book consists of three parts: I. Combinatorial
Geometry, II. Fundamental Geometric Algorithms, and IIl. Geometric
and Algorithmic Applications. Each part consists of four to six chapters.
The non-trivial connection pattern between the various chapters of the three
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parts can be somewhat untangled if we group the chapters according to four
major computational problems. The construction of an arrangement of hyper-
planes is tackled in Chapter 7 after Chapters 1, 2, and 5 provide preparatory
investigations. Chapter 12 is a collection of applications of an algorithm that
constructs an arrangement. The construction of the convex hull of a set of points
which is discussed in Chapter 8 builds on combinatorial results presented in
Chapter 6. Levels and other structures in an arrangement can be computed by
methods described in Chapter 9 which bears a close relationship to the combina-
torial studies undertaken in Chapter 3. Finally, space cutting algorithms are
presented in Chapter 14 which-is based on the combinatorial investigations of
Chapter 4 and the computational results of Chapter 10. The above listing of
relations between the various chapters is by no means exhaustive. For example,
the connections between Chapter 13 and the other chapters of this book come in
too many shapes to be described here. Finally, Chapter 15 reviews the techniques
used in the other chapters of this book to provide some kind of paradigmatic
approach to solving computational geometry problems.

Prerequisites together with notational conventions followed in this book are
collected at the end in Appendices A and B. Each chapter includes a set of exer-
cises of various degrees of difficulty. I have tried to estimate the difficulty of
each problem and expressed my opinion in terms of numbers 1 through 5 with
the meaning defined as follows:

1 if the problem is trivial or very easy,

if the problem is easy but it may be tedious to solve it,

if the problem is of moderate difficulty,

if the problem is very difficult, and

if the problem is still unsolved; this does not necessarily mean that it
is very difficult. ’

U W N

Of course, the assignment of these numbers is purely subjective except for the
number 5 which is used to mark research problems. One of the purposes of these
collections of exercises and open problems is to give results that extend the
material presented in the corresponding chapters; another purpose is to point out
related open problems. Each chapter also contains a collection of bibliographic
notes which occasionally give pointers to places in the literature where solutions
to some of the more difficult problems in the exercise section can be found.

I would like to acknowledge the help of many colleagues and friends without
whom this book would never have been written. I thank Raimund Seidel for pro-
viding the original notes for Section 8.4 and for thoroughly reading earlier ver-
sions of parts of the book. I also thank Carlos Bhola, Jeffrey Salowe, Emo Welzl,
and an anonymous referee who suffered through earlier versions of all chapters
and provided many valuable suggestions, comments, and corrections. Thanks
also to Bernard Chazelle, Friedrich Huber, Ernst Miicke, Harald Rosenberger.

IX

and Steven Skiena for carefully reading earlier versions of various chapters.
Many of the algorithms presented in this book have been implemented during
projects at the Technical University of Graz and the University of Illinois at
Urbana-Champaign. For these implementations I thank Barbara Geymayer
Michael Hirschbock, Friedrich Huber, Hartwig Huemer, Tom Madej, Ernsé
Miicke, Harald Rosenberger, Gerd Stéckl, and Roman Waupotitsch who sacri-
ficed many of their valuable hours to do the job. For discussions on topies found
in this book, I thank Franz Aurenhammer, Bernard Chazelle, David Dobkin
Jacob Goodman, Branko Griinbaum, Leonidas Guibas, David Haussler, David,
Kirkpatrick, Hermann Maurer, Kurt Mehlhorn, Ernst Miicke, Joseph O’Rourke
Janos Pach, Richard Pollack, Franco Preparata, Harald Rosenberger, Jeani
Pierre Roudneff, Franz Josef Schnitzer, Raimund Seidel, Micha Sharir, William
Steiger, Gerd Stockl, Jan van Leeuwen, Roman Waupotitsch, Emo Welzl, Doug-
las West, Derick Wood, and Frances Yao. T am also grateful to Hans Wossner
and Gillian Hayes from Springer—Verlag, Heidelberg, for the pleasure it was to
work with them. Last, but not least, I thank Heidrun Kaiser at Graz and Janet

Shonkwiler and June Wingler at Urbana for valuable assistance in typing this
book.

My most particular thanks go to my wife Eva whose patience and encourage-

melr{lt as well as help in preparing this book made it possible for me to finish the
task.

Urbana, May 1987 Herbert Edelsbrunner
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PART 1

COMBINATORIAL GEOMETRY

The art of counting and estimating is at the heart of combinatorics —
and it is a necessary prerequisite for analyzing algorithms and for
deciding which algorithms are the most efficient ones. Part I of this
book presents several combinatorial geometry problems and solutions
using a variety of techniques.



