Wm Leler

Constramt Programming Languages
Their Specification and Generation

Here is the first book to explore constraint languages, a new programming paradigm with applications in such
areas as computer-aided design, the simulation of physical systems, VLSI, graphics, typesetting, and artificial
intelligence. The book provides an introduction to the subject of constraint satisfaction, a survey of existing Sys-
tems, and introduces a new technique that makes constraint-satisfaction systems significantly easier to create and
extend. Because constraint languages are declarative, constraint programs are easy to build and modify, and their
nonprocedural nature makes them well suited to execution on parallel processors.

HIGHLIGHTS

¢ Defines a general-purpose specification language called Bertrand that allows a user to describe a:con:
straint-satisfaction system using rules.

* Gives examples of how to use Bertrand to solve algebraic word and computer-aided engineering problems.

* Gives examples of how to use Bertrand to solve problems in graphics involving computer-aided design,
illustration, and mapping.

* Provides precise operational semantics for augmented term rewriting, and presents techniques for etticient
execution and compilation.

Constraint Programming Languages: Their Specification and Generation is aimed at researchers arid engineers
who are investigating declarative languages and how to build useful systems using constraint-satisfaction tech-
niques. The book will also be of interest to computer scientists looking for applications of constraint program-
ming languages in a broad range of areas.

ABOUT THE AUTHOR

Wm Leler received his Ph.D. from the University of North Carolina at Chapel Hill; this book is based on the
thesis he submitted there. He is currently a visiting researcher at the University of Manchester, England, and was
previously affiliated with the Tektronix Computer Research Laboratory in Beaverton, Oregon.

ISBN0-201-0L243-7
ADDISON-WESLEY PUBLISHING COMPANY /

APPLICATA

wa

BIBLIOTECA

Languages

Their Specification and Generation

Wm Leler

A
vV

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts ¢ Menlo Park, California ¢ New York
Don Mills, Ontario Wokingham, England ¢ Amsterdam e Bonn Sydney
Singapore e Tokyo ¢ Madrid e Bogotd e Santiago e San Juan

This book is in the Addison-Wesle ies i
. y Series in Com i
Michael A. Harrison, Consulting Editor puler Science

The programs and applications i i T
, presented in this book have been i iri i
ith care, ¢ are not guaranteed for 4 n included for their Instructional value. hey have been tested

: Y particular purpose. The publisher d i
nor does it accept any liabilities with respect to the programs or agplications oo fferany varmanie o et

This document was formatted using Troff and PostScript
and printed using the following fonts: >
New Century Schoolbook
Helvetica
Courier
Symbol

Library of Congress Cataloging-in-Publication Data

Leler, Wm. (William)

Constraint Programming Languages

Their Specification and Generation

Bibliography: p.

Includes index.

1. Bertrand (Computer program langua i
QA76.73.B47L45 1988 : 005‘13g3 & ;7?11;1;6
ISBN 0-201-06243-7

Copyright © 1988 by Addison-Wesley Publishing Company, Inc

All rights reserved i licati
Allr ygform o a.nN(I)n ;:;rnt of tlhls put?llcatlon ma.y be reproduced, stored in a retrieval system, or transmitted
y $, electronic, mechanical, photocopying, recording, or otherwise, without the ’

prior written permission of the ublisher. Pri i ; :
in Canada, p . Printed in the United States of America. Published simultaneously

ABCDEFGHIJ-AL-8987

Preface

Constraint languages represent a new programming paradigm with applications in such areas as the simula-
tion of physical systems, computer-aided design, VLSI, graphics, and typesetting. Constraint languages are
declarative; a programmer specifies a desired goal, not a specific algorithm to accomplish that goal. As a result,
constraint programs are easy to build and modify, and their nonprocedural nature makes them amenable for

execution on parallel processors.

This book is aimed at researchers investigating declarative programming languages and rewrite rule
systems, and engineers interested in building usefu‘fsﬂystem‘s, using con‘straint:bswgti§fgctiori techniques. It pro-
vides an introduction to the subject of constraint satisfaction, a survey of existing systems, and introduces a new
technique that makes constraint-satisfaction systems significantly easier to create and extend. A general-purpose
specification language called Bertrand is defined that allows a user to describe a constraint-satisfaction system
using rules. This language uses a new inference mechanism called augmented term rewriting to execute the
user’s specification. Bertrand supports a rule-based programming methodology, and also includes a form of
abstract data type. Using rules, a user can describe new objects and new constraint-satisfaction mechanisms.
This book shows how existing constraint-satisfaction systems can be implemented using Bertrand, and gives
examples of how to use Bertrand to solve algebraic word and computer-aided engineering problems, and
problems in graphics involving computer-aided design, illustration, and mapping. It also gives a precise
operational semantics for augmented term rewriting, and presents techniques for efficient execution, includ-

ing interpretation using fast pattern matching, and compilation.
The software described in this document is available for a nominal charge. Inquiries should be directed
to the author at the following address:
P.O. Box 69044
Portland, Oregon 97201

Some ideas feel good to us. This concept is common enough, although it appeals more to our emotions
than our intellect. For example, on the first day of class, the professor of an introductory psychology class I
took declared [Nydegger 1973]:

“It will be my task during this semestet to convince you that behaviorism is not only correct, but that
it is right and good”

Another example appears in the IDEAL user’s manual [Van Wyk 1981]:
“To take advantage of IDEAL’s capabilities, you must believe that complex numbers are good’
IDEAL uses complex numbers to represent two-dimensional graphical points, the advantage being that,

because all objects in IDEAL are complex numbers, the same operators and functions can be used on all
objects, whether they represent numbers or points.

Why do some ideas feel good? Perhaps there is a measure of beauty for ideas, and some are simply
more appealing than others. One may worry, however, that a discussion of aesthetic issues is not compatible
with the practice of computer science, and that such arguments belong with other questions of taste, such as
those about the right way to indent nested loops or the proper choice of variable names. Indeed, one sometimes
hears computer scientists making exhortations resembling those of the psychology professor quoted above. A
fairly well-known example of this is the so-called war between the “big-endians” and the “little-endians] con-

cerning whether the bits and bytes of a machine word should be numbered starting from the most or the least
significant end.

Should we reject aesthetic considerations as contrary to scientific method? Experience has shown
otherwise. Proper attention to the goals of aesthetics leads to measurably better designs. As Fred Brooks
says, “Good esthetics yield good economics” [Blaauw & Brooks p. 86, 1986].

The pursuit of good design principles transcends aesthetics. To avoid meaningless arguments about
taste, we must give some basis for our aesthetic judgments. Toward this end, Blaauw and Brooks outline four
principles of good design: consistency, orthogonality, propriety, and generality. They apply their principles to
computer architecture, but similar principles apply to other areas. In designing computer languages, two key
principles are simplicity and generality. For example, we can say that the use of complex numbers in IDEAL
is good because it is simpler than having two separate data types, and because it is more general to allow opera-
tors to work on both numbers and points. To paraphrase something a professor of mine once told me, if you find
a simple solution to one problem and then find that the same solution simultaneously solves several otlier prob-

lems, then you are probably onto something exciting. Working with constraint-satisfaction systems has been,
and continues to be, very exciting,

Acknowledgements

I wish to thank Bharat Jayaraman for his persistent help with this work, and Fred Brooks for his early
encouragement and support. I am truly grateful to the wonderful people at the Tektronix Computer Research
Laboratory, especially Rick LeFaivre, for allowing me to spend so much time writing this book. Alas, no list of
acknowledgements is ever complete—I need to thank the several dozen people and places who somehow found
out about this research and either requested copies of this book or invited me to give talks. T especially want to
thank several people whose careful reading and comments on this book were invaluable during its preparation:

David Maier, Mike O’Donnell, and Chris Van Wyk, and all the people who supplied encouragement, especially
Scott Danforth, Marta Kallstrom, Larry Morandi and Philip Todd.

Dedication

Finally, I must step back from this work and admit that it is not really important at all. There are special
people out ‘there who have dedicated their lives to ideas that not only might make a difference, but must. 1
dedicate this book to Robin and John Jeavons, whose work on Intensive Farming techniques has already made

a difference to a hungry world, and to other people like them who have the courage to work long and hard for
the important ideas they believe in.

Wm Leler

Chapter 1
1.1
1.2
1.3
1.4
1.5

Chapter 2
2.1
2.2
2.3,
2.4
2.5

Chapter 3
3.1
3.2
3.3

Chapter 4
41
4.2
4.3

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

Contents

Preface iii
Introduction 1
Imperative versus Constraint Programming.......cc.ocovvneiiniinenennnns 1
Scope of the Research ... 6
Problem Solving versus Constraint Programming..........ccovevnniinnnnnn, 7
Limitations of Existing Constraint Languages...........cccceeviiiinicinnnnn. 9
Proposed SOIULION ..c..coviiiiiiiiniininrieiie e 12
Constraint Satisfaction 15
Constraint-Satisfaction Techniques......cccccveiivireiiinere i 15
Higher-Order Constraints ..o 32
Constraints Involving Timeccocovv e 32
DEfAtIE VAIUES oot eevviieeeiriieeeeeeirtteeeseiireeeerbreesessberesssasreresssiinesssssisnsaens 36
SUIINATY 1ecveeveiveeveeresie e eeteessisesbe bbb e b s b e st e b e b e s basresra s s e be b 36
Augmented Term Rewriting 39
Torm REWTIEIIIE «.viiveirreireerr ittt 39
Augmented Term ReWritingcocoviriiviniiiiiiin 46
BertraN oo e iovveeeeeeeiiiee e st ee s rbara e et it reeeribete e s e s st et e e e e et e s s s rrbe s 61
Existing Constraint Languages . 69
Constraint Languages That Use Numeric Techniques...........cccocveiiens 70
Constraint Languages That Use Symbolic Techniquesc.......... 82
SImilar SYSEEIMScvveeriiiiiiii i 86
Equation Solving 87
Solving Linear Equations.......cccovoviiiiioniiiiinienneene 87
Interesting ANSWETS ..ottt 89
BOOLEATS oo eevvveeeseeneitteeieirieresseerereeesetsbretesbbreeesbbrat s s nsbreressebrratsssesrntres 90
Reasoning with Equations ..o 92
Nonlinear Transformationscccccevvvieeeerricriiee e 93
TWOLA PrODLEINIS .o ivvieeieivireeeeeiriereee e ribrte e st e e ntrer e s sren e e s s sanbat s e s s s sbbnrrs 93
T1ectrical CATCUILS .uvviriiirvrree it et ssiree e e rerrrer s s e s s sbanaes 96

Chapter 6
6.1
6.2
6.3

Chapter 7
7.1
7.2
7.3
7.4
7.5

Chapter 8
8.1
8.2
8.3

Appendix A
Al
A2

Appendix B
B.1
B.2
B.3
B4
B.5

Appendix C

Vi

Graphics Applications

Input and OULPULcovuiiiiiiceicieiecee e

GIAPRICS v
e

.......................
...

Execution

INterPreting.....ccoovviiiiiiiiicc e
Preprocessing Rules
COMPHIAEION. oo eesee s
Execution on Parallel ProcesSors........coveeeeeecereeerereeressseressesessesesens

Conclusions
Summary and Contributionsc..c.ccveveereereeresieresrseresreereerssrsssseres
Benefits

.............................
...

.......................
..

......................
..

Operational Semantics

STNEAK ©vveviiriviiirectitiie ittt eee e ees e reeesessesesssessesereenes

SEIANEICS .1 sesescssesessrses oo
Adding Types: Tags and GUATASccveverererereesreeeerereeresiesssnses
Differences
Discussion

...........................
..

....................
..

An Interpreter

References

Index

193

199

Chapter 1

introduction

1.1 Imperative versus Constraint Programming

In current imperative computer languages, such as C or Pascal, a program is a step-
by-step procedure. To solve a problem using these languages, the user must manu-
ally construct and debug a specific executable algorithm. This style of problem solv-
ing has become so pervasive that it is common to confuse algorithm design with prob-
lem solving. The effort required to program using imperative languages tends to
discourage programming and thus effectively restricts most users to canned applica-_
tion programs.

To use an algorithmic program to solve different but related problems, the pro-
grammer must anticipate the different problems to be solved and include explicit
decision points in the algorithm. For example, using a syntax similar to C or FOR-
TRAN one might write the statement:

C = (F—-32)x5/9

to compute the Celsius (C) equivalent of a Fahrenheit (F) temperature. To convert
Fahrenheit temperatures to Celsius, however, a separate statement would have to be

included in the program; namely,

F = 32 + 9/5x%C

along with a branch (if) statement to choose which statement to execute. To be able
to convert temperatures to and from degrees Kelvin, even more statements (with the
associated branch points) would have to be added:

K cC - 273
C K + 273
K = 290.78 + 5/9XF
F = 523.4 + 9/5XK

I

I

As new variables are added to this program, the number of statements grows
exponentially.

In constraint languages, programming is a declarative task. The programmer
states a set of relations between a set of objects, and it is the job of the constraint-
satisfaction system to find a solution that satisfies these relations. Since the specific

2 Constraint Programming Languages

steps used to satisfy the constraints are largely up to the discretion of the constraint-
satisfaction system, a programmer can solve problems with less regard for the algo-
rithms used than when an imperative language is used. For the growing number of
computer users untrained in traditional imperative programming, this can be a
significant advantage. For example, constraintlike spread-sheet languages (such as
VisiCalc, Lotus 1-2-3, and others) allow users to solve many different financial model-
ing problems without resorting to programming in the traditional sense.

In a constraint language, the statement
C = (F-32)x5/9

is a program that defines a relationship between degrees Fahrenheit (F) and degrees
Celsius (C). Given either F or C, the other can be computed, so the same program can
be used to solve at least two different problems, without any explicit decision points.
With a typical constraint-satisfaction system, we could also solve for the temperature
where the values in degrees Fahrenheit and Celsius are the same (-40 degrees), and
so on. The ability to solve many different problems with the same program, eve;1 if
they were not anticipated when the program was written, is a key advantage of con-
straint languages.

Constraint programs also are easy to modify and extend — to add the ability to
convert between degrees Kelvin () and Celsius (C), only a single additional con-
straint is required:

K=C-273

In'adéition, a typical constraint-satisfaction system can combine these two relation-
shllps in ordel.* to convert between degrees Kelvin and Fahrenheit, for example,
without requiring any additional statements.

N A program in a constraint language consists of a set of relations between a set of
objects. In our constraint-language program, F and C are the objects, which in this
case are numbers, and the constraint C = (F—32) x5/9 is the relationship between
these two objects. Given a value for either F or C, the constraint-satisfaction system
can use the problem-solving rules of algebra to solve for the other.

1.1.1 Assignment versus Equality

The di.fference between imperative languages and constraint languages is highlighted
by their treatment of equality. Algorithmic languages require two (or more) different
operators for equality and assignment. For example, in FORTRAN the relational
operator .EQ. returns true or false depending on whether its two arguments are
equal, and = is used to assign the value of an expression to a variable, whereas in
Pascal = is used as the relational operator and : = for assignment.

- 1. Introduction

In a constraint language, equality is used only as a relational operator, equiv-
alent to the corresponding operator in conventional languages. An assignment opera-
tor is unnecessary in a constraint language; the constraint-satisfaction mechanism
“assigns” values to variables by finding values for the variables that make the equal-

ity relationships true.
For example, in the constraint-language statement
X =5
the equal sign is used as a relational operator (as in mathematics), but to make this
statement true the constraint-satisfaction system will give the value 5 to X. Thus the
equal sign acts similarly to an assignment operator. Unlike the imperative assign-

ment operator, however, arbitrary expressions can appear as its left argument. For
example, the previous statement could be written in many different but semantically

equivalent ways:

5 =X
X+ 1=25
3 X X=X+ 10

Our temperature-conversion program also could be expressed in many equivalent
forms. In fact, we might have forgotten the equation for the relationship between F
and C, but remember the following information:
o The relationship is linear (it can be expressed as an equation of the form
“y=m-x+b").
o 212 degrees Fahrenheit is the same temperature as 100 degrees Celsius (the boil-
ing point of water).
e 32 degrees Fahrenheit is the same temperature as 0 degrees Celsius (the freez-
ing point of water).

This information is easily expressed as the following three constraints:

F = MXC + B
212 = Mx100 + B
32 = MX0 + B

The constraint-satisfaction system will determine the appropriate values for M and B
using the last two constraints, and plug them into the first constraint, yielding the
desired F = 1.8xC + 32. Constraint languages allow the user greater expressive-
ness, because a program can be stated in whichever way is most convenient.

The treatment of equality in constraint languages also is more natural to
nonprogrammers. For example, the statement (here expressed in FORTRAN)

X =X+ 1

4 Constraint Programming Languages

has always been a source of confusion to beginning programmers until they learn
about the imperative notion of incrementing variables. This statement would be a
contradiction in a constraint language because no finite value can be found to satisfy
it. Furthermore, a constraint-satisfaction system can detect that this statement is
false without knowing the value of x. The rules of algebra can be used to subtract X
from both sides of the equation, yielding 0 = 1, which evaluates to false. The
equivalent FORTRAN expression

X .EQ. X + 1

if used in a loop that supplies values for x, will be blindly reevaluated to false over
and over for each new value of X. The ability to evaluate an expression containing

unknown variables to a constant can be used to advantage by a compiler for a con-
straint language.

Also note that, in a constraint language, the equal sign expresses an invariant
(a constraint) between objects that is permanent during the program’s execution. In
a conventional language, the only time a relation expressed by an assignment state-
ment is guaranteed to hold is just after the statement is executed.

1.1.2 Using Constraints for Computer Graphics

A major advantage of constraint languages is their ability to describe complex objects
simply and naturally. .As an example, consider the relatively simple task of drawing
a regular pentagon using some computer graphics system.

(0,0)

(0.588, —0.809)
Figure 1.1 Drawing a regular pentagon

This would be very difficult (if not impossible) to do with any degree of accuracy using
a typical interactive graphics system such as MacPaint [Kaehler 1983]. With a typi-
cal procedural graphics system, such as PIC [Kernighan 1982] or GKS [ISO 1981]
this task is reasonable, but the user must specify how to draw the pentagon by spe,aci-
fying the endpoints of the lines. These endpoints must be calculated using

1. Introduction 5

trigonometric functions, and they depend on the location, size, and orientation of the
pentagon. For example, if an upright pentagon of unit radius is centered at the point
(0, 0), then the lower-right corner is approximately at (0.588, -0.809), as in Figure
1.1. We could possibly specify the endpoints relative to the center of the pentagon, or
as a function of the size or even the orientation of the pentagon, but this would be
quite a bit of work for a user who just wanted to draw a simple figure.

With a constraint language, a regular pentagon could be specified by drawing
any five-sided convex polygon, constraining the vertices to lie on a circle as in Figure
1.2 (or equivalently, to be of equal distance from a point), and constraining the edges

to be of equal length.

Figure 1.2 Describing a regular pentagon

This not only is easier to do, but also results in a more concise description because it
does not depend on any extraneous information, such as the location, size, or orienta-
tion of the pentagon. It also does not constrain the order in which the sides of the
pentagon are drawn (for example, to allow a program to optimize pen movement for a
plotter). Finally, it is much easier to generalize the constraint description to other
regular polygons. If desired, constraints can be placed on the location and size of the
figure by constraining the location and size of the circle (note that these constraints
are independent of the number of sides in the figure). We can also place constraints
on the orientation of the figure, for example by constraining the x coordinates of the
top point of the figure and the center of the circle to be equal, or by constraining the

bottom to be horizontal.

The declarative semantics of constraint languages allow us to describe graphical
objects while avoiding extraneous concerns about the algorithms used to draw them.
Graphics imagery especially benefits from this because it is inherently spatial and is
produced only grudgingly by current procedural languages.

6 Constraint Programming Languages

1.2 Scope of the Research

This section defines more precisely some of the terms that have been used informally
in the preceeding discussion. A constraint expresses a desired relationship among
one or more objects. A constraint language is the language used to describe the
objects and the constraints. A constraint-language program is a program written
in a constraint language; this program defines a set of objects and set of constraints
on these objects. A constraint-satisfaction system finds solutions to constraint-
language programs. The constraint-satisfaction system uses problem-solving
methods, called constraint-satisfaction techniques, to find the values of the
‘objects that will make the relationships true.

These definitions are broad and can be interpreted to include a wide variety of
systems, from languages that allow some constraintlike statements, to special-
purpose systems that satisfy relations between objects. For example, some impera-
tive programming languages (such as Euclid and Common LISP) have an ASSERT
statement, and even FORTRAN has an EQUIVALENCE statement that effectively
asserts that two variables are always equal. Also included by these definitions would
be languages such as the graphics language PIC [Kernighan 1982] and spread-sheet
languages which allow relations to be specified, but require that these relations be
ordered so that the values of the variables can be calculated in a single pass. At the
opposite end of the spectrum allowed by these definitions, symbolic-algebra systems
can solve systems of simultaneous equations, and integer programming techniques
can be used to find optimal solutions to systems of inequalities.

This book describes an emerging class of (possibly general-purpose) program-
ming languages that use constraint-satisfaction techniques, which I will call con-
straint programming languages. From this designation, I will exclude a vast
number of programming languages that use constraint-satisfaction techniques
incidentally, or that allow constraints, but require the user to indicate how they are
to be solved (typically by ordering them), and will consider only those declarative
languages that use conw satisfaction as their pr1mary computatmﬁ?n’&ﬁﬁlsm
I will also consider only those constrammtvlanguages that can reasonably be called pro-
gramming languages, as opposed to systems that solve constraints but are not gen-
erally considered to be programming languages, such as typical symbolic-algebra sys-
tems. This distinction may seem arbitrary, but it is analogous to the distinction
between logic programming languages such as Prolog, and resolution theorem-
proving systems.

I'will also concentrate on languages that deal primarily with numeric con-
straints, and will deal only briefly with languages that use searching techniques to
solve logical constraints, such as Prolog. In the future, however, these two classes of
languages may not be so distinct. There are already languages being proposed that

1. Introduction 7

may be able to deal with both types of constraints. For the present, however, we will
concentrate on techniques for solving numeric constraints.

As is true of most programming languages, a major concern will be the execu-
tion speed of constraint programming languages. For example, some constraint-
satisfaction techniques will be of interest despite their weak problem-solving abilities
because they can be interpreted quickly, or are amenable for compilation. The ability
to compile constraint programs will be of major interest in evaluating constraint-
satisfaction techniques. ' :

This book will consider only numeric constraint programming languages and
constraint-satisfaction systems. Therefore, unless otherwise noted, I will use the
shorter terms constraint language and constraint-satisfaction system to refer
to such languages and the systems that interpret them. I also will consider only
those constraint-satisfaction techniques that are suitable for implementing these con-
straint languages. Many potential constraint-satisfaction techniques will not be dis-
cussed (or will be only mentioned briefly) simply because they are too slow to be used

by a programming language.

1.3 Problem Solving versus Constraint Programming

Because of the high level of specification possible in constraint languages, it is much
easier to state constraints than to satisfy them. This is in contrast to conventional
imperative languages, where it is relatively easy for the compiler to “satisfy” a
correctly specified algorithm. In a constraint language, it is easy to specify correctly
problems that any constraint satisfier cannot solve. For example, consider the follow-
ing constraints:

K4y = P
X, Y, Z, N are positive integers
n>2

Finding a set of values that satisfies these constraints would constitute a counterex-
ample to Fermat’s last theorem. This is obviously an extreme example, but there are
many problems, easily solvable by human problem solvers, or even by special-purpose
computer programs, that cannot be solved by currently used constraint-satisfaction

techniques.

The descriptive nature of constraint languages makes it easy to describe prob-
lems, which is one of their major advantages, but it also makes it tempting simply to
express a problem to a constraint-satisfaction system and then expect it to be solved
automatically. Constraint-satisfaction systems, however, are not meant to be
general—purpdse problem solvers. They are not even as powerful as many mechanical
problem solvers, such as symbolic-algebra systems. Constraint-satisfaction systems

8 Constraint Programming Languages

are meant to solve quickly and efficiently the little, trivial problems that surround
and obscure more difficult problems. This frees the user’s problem-solving skills for
use on the more interesting problems. Thus constraint-satisfaction systems should

not be thought of as problem solvers; they are tools to help humans solve problems.

This is not to say that constraint languages cannot be used to solve difficult
problems. After all, languages such as LISP have no problem-solving abilities at all,
but they can be used to build powerful symbolic-algebra systems and other problem
solvers. Constraint languages add a small amount of problem-solving skill, and so
reduce the size and difficulty of the task the user must deal with. This is roughly
analogous to the way that LISP systems automatically take care of garbage collec-
tion, so the user need not be concerned with the management of storage. With LISP,
we pay for automatic storage management by giving up some execution speed. With
constraint languages, because most problem-solving methods are application specific,
we give up some programming generality.

An Example

What a constraint language can do is to make it easier for a human problem
solver to describe a problem to a computer, and thus make it easier to apply the
computer’s abilities to the problem. For example, calculating the voltages at the
nodes of a small network of resistors requires the solution of a few dozen simultane-
ous equations. There are several possible approaches (ignoring constraint languages)
to finding the solution for such a problem:

e Set up the equations and solve them by hand. This is what most people would
do, but it is a tedious and error-prone task.

e Write a program in an imperative language to calculate the voltages. Unfor-
tunately, writing an imperative program to solve simultaneous equations is more
difficult, and just as error-prone, as solving the equations by hand. Writing such
a program would be worthwhile only if the user needed to solve many problems
of this type.

e Use an existing special-purpose problem solver, such as a symbolic-algebra sys-
tem, to solve the simultaneous equations. The user would still have to figure out
what the simultaneous equations are from the circuit, and each change to the cir-
cuit will require a new set of equations.

Using a constraint language, this problem can be described simply as a network
of connected resistors, and the constraint-satisfaction system can set up the simul-
taneous equations automatically (an example of this is given in Section 5.7). This
allows the user to concentrate on designing the circuit. While it is performing the
calculations for the voltages, the constraint satisfier can also check to make sure that

1. Introduction 9

we do not burn up a resistor by putting too much power through it. A human prob-
lem solver should not be bothered with such details.

In general, the issue is not how difficult are the problems that a constraint-
satisfaction system can solve, but rather how efficiently can the constraints of
interest be solved. What the constraints of interest are depends on the application.
Another issue is how easy is it for the constraints of interest to be stated to the
constraint-satisfaction system. If a constraint language is general-purpose and
extensible, then the user can tailor the language to the application, making the con-
straints of interest to the specific application easier to state.

1.4 Limitations of Existing Constraint Languages

Problem-solving systems are typically very difficult to implement, and constraint-
satisfaction systems are no exception. Even though constraint languages have been
around for over twenty years, relatively few systems to execute them have been built
in that time. Graphics researchers are still praising Ivan Sutherland’s Sketchpad
system [Sutherland 1963], built in the early 1960s, but few have attempted to dupli-
cate it. Furthermore, the constraint-satisfaction systems that have been built tend fo
be very application specific and hard to adapt to other, or more general, tasks. Con-
sequently, despite the significant contributions of existing constraint languages, they
have not found wide acceptance or use. There are several causes of this problem, and
existing constraint languages suffer from one or more of them:

e General problem-solving techniques are weak, so constraint-satisfaction systems
must use application-dependent techniques. It is usually difficult to change or
modify these systems to suit other applications. The few constraint languages
that can be adapted to new applications are adaptable only by dropping down
into their implementation language. For example, the ThingLab simulation
laboratory [Borning 1981] allows an experienced programmer to build simula-
tions (which in effect are small constraint-satisfaction systems for solving limited
classes of problems) by defining new objects and constraints, but these new con-

straints must be defined procedurally, using Smalltalk.*

e The data types operated on by typical constraint languages are fixed. There is no
way to build up new data types (such as by using records or arrays as in conven-
tional languages). For example, in Juno [Nelson 1985], an interactive graphics
constraint language, the only data type is a two-dimensional point. In order to
use Juno for even a slightly different application, such as three-dimensional
graphics, the underlying system would have to be modified extensively.

* Recent enhancements allow some constraints to be defined functionally or graphically [Borning
1985a, 1985b].

10

Constraint Programming Languages

e Some constraint languages allow the definition of new data types, but new con-

straints that utilize these new data types cannot be added. New constraints
correspond to procedures in conventional languagés. In IDEAL [Van Wyk 1982],
another graphics constraint language, the only primitive data type is a point, but
new data types such as lines, arrows, and rectangles can be defined. Relations
between the nonprimitive data types, however, must be expressed in terms of
primitives (points). So, for example, to draw an arrow between two rectangles,
separate constraints must be expressed connecting the head and tail of the arrow
to the desired points on the rectangles. This is only a limitation on expressive-
ness, but, like a conventional language without subroutines, it does tend to make
a constraint language unwieldy. It also takes away some of the benefit of using a
constraint language. For example, it is of little advantage when a constraint
language allows us to define a new data type for a resistor if we then have to
describe each connection between resistors in terms of primitive constraints
between their voltages and currents. We would much rather be able to define
constraints for connecting resistors together.

Many existing constraint languages do not allow any computations to be
expressed beyond what can be expressed by a conjunction of primitive con-
straints, So even if new constraints can be added to the language, these new con-
straints may be severely limited. In Juno, for example, new constraints can be
added as long as they can be expressed as a conjunction of Juno’s four primitive
constraints. One of Juno’s primitives asserts that two line segments are to be of
equal length, so we can add a constraint that two line segments are perpendicu-
lar by using the standard geometric construction of a perpendicular bisector.
Unfortunately, there is no way to express befweenness (for example, that a point
lies between two other points on a line). This constraint could be expressed if we
could only say that the sum of two distances is equal to a third distance, but we
cannot compute sums. Consequently, many objects cannot be uniquely specified.
For example, given the constraints that we used to define a pentagon in Section
1.1.2, Juno might instead produce a pentagram (five-sided star), since Juno does
not allow constraints on the relative order of the vertices.

Even in constraint languages that do allow computation (such as IDEAL, which

ally complete. This is a consequence of the difficulty of adding control structures
(such as conditionals, iteration, or recursion) to a nonprocedural language, such
as a constraint language, without adding any procedural semantics. Conse-
quently, there are computable functions that these languages cannot compute.
For example, without iteration (or recursion) it is impossible to express the gen-
eral concept of a dashed line (where the number of line segments is not fixed). To
solve this problem, IDEAL had to add a new primitive (the pen statement) that is

1. Introduction 11

a much restricted form of an iterator. The few constraint languages that are
computationally complete are so only because they allow the constraint program-
mer to drop down into an imperative language (typically LISP or Smalltalk).
Unfortunately, this also destroys the declarative semantics of the constraint
language. It is possible to add control structures to a declarative language
without adding procedural semantics (as in Lucid [Wadge 1985], Pure LISP, and
others), so it should be possible to add them to a constraint language.

o Even if we do not require computational completeness, if our language does not
have conditionals then constraints that depend on other constraints cannot be
expressed. Such constraints (called higher-order constraints, discussed in’
Section 2.2) allow us to tailor the solution of a set of constraints to different cir-
cumstances. For example, we might wish to express a constraint that centers
some text inside a rectangle, unless the width of the text is too wide, in which
case the text is to be broken onto multiple lines.

o Many constraint-satisfaction systems use iterative numeric techniques such as
relaxation. These techniques can have numerical-stability problems; a system
using these techniques might fail to terminate even when the constraints have a
solution, or might find one solution arbitrarily for constraints with more than
one solution. For example, Juno uses Newton—Raphson iteration for satisfying
constraints and so for the pentagon example in Section 1.1.2 it will arbitrarily
return either the desired regular pentagon or a pentagram depending on the
shape of the initial polygon. This can lead to unexpected changes to the result
when some only slightly related constraint is modified. Also, this means that the
answer might depend on the order in which the constraints are solved, which
effectively destroys any declarative semantics.

In summary, systems to execute constraint languages are diﬁﬁf}}l&}gﬂi’r‘gmg-
ment, and once one is implemented we are typically stuck with a special-purpose

language that, suffering from one or more of the above problems, is just as difficult to

modify to apply to other applications. What is needed is an easier way to implement
constraint languages, which also avoids all of the above problems. We would like the
languages so implelﬁé}ited to be computationally complete (while retaining purely
declarative semantics, of course), so we can handle any constraint whose solution is
computable, including higher-order constraints. In addition, something like abstract
data types would allow new data types and constraints to be defined. And, of course,

it must be fast.

One possible approach would be to generate constraint-satisfaction systems
using a rule-based specification language — similar to the way parsers can be built
by parser generators that accept specifications in the form of grammar rules. Of
course, in order to specify a constraint-satisfaction system, not only must we specify

12 Constraint Programming Languages

the syntax of the constraint language (as for a parser), we must also specify its
semantics (what the constraints mean), and, even more difficult, we must give rules
that specify how to satisfy the constraints. In order to have abstract data types, we
must also be able to define new data types, and be able to control the application of
rules to objects based on their type.

1.5 Proposed Solution

This book presents a general-purpose language called Bertrand (after Bertrand
Russell), which is a solution to the problem of building constraint-satisfaction sys-
tems. Bertrand is a rule-based specification language — a constraint satisfaction sys-
tem is specified as a set of rules and is automatically generated from those rules.
Bertrand allows new constraints to be defined, and also has a form of abstract data

type.

The major goal of this book is to show that Bertrand makes it easier to build
constraint-satisfaction systems. In order to demonstrate how easy it is to build
constraint-satisfaction systems using this language, we will examine how existing -
constraint languages would be used to solve some example problems,* and then gen-
erate a constraint language using Bertrand to solve the same problems. These exam-
ples will also serve to show that the constraint languages generated using Bertrand
are as powerful as existing constraint languages.

The mechanism used to interpret the rules specifying a constraint-satisfaction
system is a form of term rewriting. Term rewriting [Bundy 1983] has been used to
build interpreters for languages other than constraint languages. For example, the
equational interpreter, a term rewriting system developed by Hoffmann and
O’Donnell at Purdue, has been used to build interpreters for LISP and Lucid [Hoff-
mann 1982]. Bertrand uses an extended form of term rewriting, which I call aug-
mented term rewriting. Within the framework of term rewriting, augmented term
rewriting includes the ability to bind values to variables, and to define abstract data
types. These extensions make term rewriting powerful enough that it can be used to

build interpreters for constraint languages.

Augmented term rewriting shares with standard term rewriting several desir-
able properties: it is-general-purpose and has a simple operational semantics, which
makes it easy to execute. In addition, augmented term rewriting has properties that
make it possible to take advantage of well-known optimizations, so the same mecha-
nism also helps solve the execution-speed problem. It can be implemented efficiently
as an interpreter using fast pattern-matching techniques, or compiled to run on a
conventional processor or even a parallel processor such as a data-flow computer.

* In most cases, the problems will be substantial examples taken from the thesis or other document
describing the existing constraint language.

1.

introduction 13

Constraint-satisfaction systems can be easily described using Bertrand and

efficiently implemented using augmented term rewriting.

The remainder of this book is divided as follows:

Chapter 2 discusses existing constraint-satisfaction techniques. These tech-
niques will be used to build constraint-satisfaction systems using Bertrand.

Chapter 3 describes augmented term rewriting, especially how it differs from
standard term rewriting. This chapter also introduces the Bertrand program-
ming language, shows its connection to augmented term rewriting, and gives
some examples of its use.

Chapter 4 describes existing constraint lahguages, and presents example prob-
lems for them to solve. In Chapters 5 and 6, constraint languages will be built
using Bertrand to solve these same problems.

Chapter 5 uses Bertrand to build an equation solver based on algebraic transfor-
mation techniques. This algebraic constraint-satisfaction system is used as a
base on which the other constraint languages are built to solve the example prob-
lems.

Chapter 6 discusses how graphic input and output can be added to Bertrand, and
uses the resulting language to solve constraint problems involving graphics.

Chapter 7 discusses how augmented term rewriting is amenable for efficient exe-
cution, including showing how parallelism can be detected and utilized.

Appendix A gives further examples of constraint languages built using Bertrand,
including listings of the rules for a simultaneous equation solver and a graphics
library.

Appendix B presents a formal operational semantics for augmented term rewrit-
ing, and discusses its properties.

Appendix C gives the code for a working interpreter for an augmented term
rewriting system.

