|
Scheda bibliografica proveniente da importazione di metadati da altro sistema |
Tipo: |
Testo a stampa, Risorsa analitica |
É contributo di: |
Graph-based representations in pattern recognition |
Titolo: |
Graph Embedding in Vector Spaces by Means of Prototype Selection |
Pubblicazione: |
Berlin ; Heidelberg ; New York : Springer, ©2007 |
Descrizione fisica: |
383-393 |
Titolo uniforme: |
Graph-based representations in pattern recognition |
Numeri standard: |
DOI 10.1007/978-3-540-72903-7_35 |
Sommario o abstract: |
The field of statistical pattern recognition is characterized by the use of feature vectors for pattern representation, while strings or, more generally, graphs are prevailing in structural pattern recognition. In this paper we aim at bridging the gap between the domain of feature based and graph based object representation. We propose a general approach for transforming graphs into n -dimensional real vector spaces by means of prototype selection and graph edit distance computation. This method establishes the access to the wide range of procedures based on feature vectors without loosing the representational power of graphs. Through various experimental results we show that the proposed method, using graph embedding and classification in a vector space, outperforms the tradional approach based on k -nearest neighbor classification in the graph domain |
Altre responsabilità: |
Kaspar Riesen Michel Neuhaus Horst Bunke |
Classificazione Dewey: |
006 ed.22 Metodi speciali di elaborazione |
Lingua della pubblicazione: |
Inglese |
Paese di pubblicazione: |
Germania ; Stati Uniti d'America |
Codice identificativo: |
IT/ItRC/00017375 |
data di importazione: |
01-01-2014 |
|
Full text  |