Ricerca: Codice identificativo = IT/ItRC/00017357
Lista sintetica

Scheda bibliografica proveniente da importazione di metadati da altro sistema
Tipo: Testo a stampa, Risorsa analitica
É contributo di: Graph-based representations in pattern recognition
Titolo: Deducing Local Influence Neighbourhoods with Application to Edge-Preserving Image Denoising
Pubblicazione: Berlin ; Heidelberg ; New York : Springer, ©2007
Descrizione fisica: 180-190
Titolo uniforme: Graph-based representations in pattern recognition
Numeri standard: DOI 10.1007/978-3-540-72903-7_17
Sommario o abstract: Traditional image models enforce global smoothness, and more recently Markovian Field priors. Unfortunately global models are inadequate to represent the spatially varying nature of most images, which are much better modeled as piecewise smooth. This paper advocates the concept of local influence neighbourhoods (LINs). The influence neighbourhood of a pixel is defined as the set of neighbouring pixels which have a causal influence on it. LINs can therefore be used as a part of the prior model for Bayesian denoising, deblurring and restoration. Using LINs in prior models can be superior to pixel-based statistical models since they provide higher order information about the local image statistics. LINs are also useful as a tool for higher level tasks like image segmentation. We propose a fast graph cut based algorithm for obtaining optimal influence neighbourhoods, and show how to use them for local filtering operations. Then we present a new expectation-maximization algorithm to perform locally optimal Bayesian denoising. Our results compare favourably with existing denoising methods
Altre responsabilitą: Ashish Raj
Karl Young
Kailash Thakur
Classificazione Dewey: 006 ed.22 Metodi speciali di elaborazione
Lingua della pubblicazione: Inglese
Paese di pubblicazione: Germania ; Stati Uniti d'America
Codice identificativo: IT/ItRC/00017357
data di importazione: 01-01-2014
Full text

Chi possiede questa Risorsa analitica
0004 Dettagli BibliotecaCNR - Area della Ricerca di Genova Servizio di Documentazione Scientifica
Disponibilitą: Biblioteca - collocazione: Zona Consultazione: L.III.4/15
Prestito non consentito
Document delivery

SEI QUI: HOME SCHEDA BIBLIOGRAFICA 9:29 Sabato 10 Maggio 2025 - IP remoto: 3.149.4.109